О механизме образования жидких углеводородов из. Промотированный катализатор синтеза фишера-тропша, способ его получения и способ синтеза углеводородов фишера-тропша


Синтез Фишера-Тропша

Технология получения синтетического топлива из углеводородного газа GTL (gas-to-liquid, т. е. «газ-в-жидкость») начала развиваться в 20-х годах прошлого столетия благодаря изобретению реакции синтеза Фишера-Тропша. В то время в богатой углем, но бедной нефтью Германии остро стоял вопрос производства жидкого топлива. После изобретения процесса германскими исследователями Францем Фишером и Гансом Тропшом было сделано множество усовершенствований и исправлений, и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов. Технологии GTL, как таковой, скоро сто лет, и развивалась она долгие годы как вынужденная альтернатива нефтедобыче для стран, лишенных доступа к нефти. Развитие GTL шло поэтапно, поколениями. Первое поколение GTL ответственно за широко известный во время Великой Отечественной немецкий эрзац-бензин. Второе развивалось в ЮАР как ответ международному эмбарго. Третье - в странах Запада после энергетического кризиса 1973 г. С каждым новым поколением технологии капитальные затраты уменьшались, выход моторного топлива с тонны сырья увеличивался, а побочных продуктов становилось все меньше.

Развитие технологии переработки природного газа в синтетическую нефть особенно актуально для России по нескольким причинам. Во-первых, из-за наличия больших месторождений газа в Сибири. Технология позволяет перерабатывать газ непосредственно на месте и использовать имеющихся нефтепроводы для транспортировки, что экономически более выгодно. Во-вторых, GTL позволяет утилизировать попутные газы месторождений нефти, а также сдувочные газы НПЗ, обычно сжигаемые "на свече". В-третьих, полученные по этой технологии моторные топлива превосходят нефтяные аналоги по эксплуатационным и экологическим показателям.

Нефть является единственным глобальным сырьем для производства моторных топлив и важнейшим - для химического синтеза. Однако постепенно ситуация изменяется. Исчерпание мировых запасов нефти вынуждает обратиться к другим источникам углеводородного сырья, наиболее значительными из которых являются уголь и природный газ. Извлекаемые запасы газа в энергетическом эквиваленте превышают нефтяные в 1,5 раза, запасы угля - более чем в 20 раз . По экспертным оценкам, к 2015 г. доля нефти в мировом энергетическом балансе будет составлять 38 %, природного газа - 26 %, угля - 25 % .

Первой стадией превращения природного газа и угля в химические продуты и жидкие топлива является их конверсия в синтез-газ -смесь СО и Н 2 . Далее основные направления переработки синтез-газа выглядят следующим образом:

Синтез метанола;
. производство аммиака;
. оксо-синтез и формилирование ароматических соединений;
. карбонилирование метанола в уксусную кислоту;
. карбоксилирование олефинов;
. синтез Фишера-Тропша (ФТ).

Надо отметить, что получение синтез-газа (паровой конверсией или парциальным окислением метана, газификацией угля) является наиболее дорогой составляющей всего производства. Капитальные затраты на секцию синтез-газа в строительстве завода по получению метанола из природного газа или углеводородов по технологии ФТ из угля составляют 60-70 % .

Синтез Фишера-Тропша (ФТ) представляет собой сложную совокупность последовательных и параллельных превращений, протекающих на поверхности гетерогенного катализатора. Основными являются реакции гидрополимеризации СО с образованием парафинов и олефинов:

nCO + 2nH 2 CnH 2 n + H 2 O, nCO + (2n + 1)H2 н> CnH 2 n + 2 + H 2 O. В присутствии железных катализаторов образуются также значимые количества оксигенатов - спиртов, альдегидов, кетонов и карбоновых кислот. При повышенных температурах в присутствии цеолитных сокатализаторов образуются ароматические соединения. Побочные реакции - прямое гидрирование СО в метан, диспропорционирование СО (реакция Белла-Будуара) и реакция водяного газа, интенсивно протекающая на железных катализаторах:

CO + 3H 2 - CH 4 + H 2 O,

2CO - C + CO 2 , CO + H 2 O - CO 2 + H 2 .

Максимальный теоретически возможный выход углеводородов из 1 нм3 синтез-газа состава СО:Н2 = 1:2 составляет 208 г.

В условиях синтеза ФТ термодинамические вероятности образования продуктов выглядят следующим образом :

Метан > алканы > алкены > О-содержащие;
. низкомолекулярные н-алканы > высокомолекулярные н-алканы;
- высокомолекулярные н-олефины > низкомолекулярные н-олефины.

В действительности выход метана на хороших катализаторах синтеза ФТ не превышает 8 %. Молекулярно-массовое распределение диктуется кинетикой полимеризации (см. ниже). Таким образом, синтез ФТ является кинетически контролируемым процессом, состав конечных продуктов далек от равновесного.

Синтез ФТ - сильно экзотермический процесс. Тепловой эффект реакции гидрополимеризации СО составляет 165 кДж/моль СО, тепловой эффект прямого гидрирования еще выше - 215 кДж/моль. Отвод большого количества тепла в ходе синтеза представляет собой важнейшую проблему при проектировании промышленных установок синтеза ФТ. Катализаторами реакции являются металлы VIII группы. Наибольшую каталитическую активность проявляют Ru, Fe, Co, Ni. Рутений активен уже при 100 °С, в его присутствии при повышенном давлении образуются парафины очень высокой молекулярной массы (полиметилен). Однако этот металл слишком редок и дорог, чтобы рассматриваться в качестве промышленного катализатора. Никелевые контакты при атмосферном давлении обеспечивают в основном прямое гидрирование СО в метан. При повышенном же давлении легко образуется летучий Ni(CO) 4 , так что катализатор вымывается из реактора. В силу этих причин коммерчески использовались только железные и кобальтовые каталитические системы.

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы) . Типичными для их работы являются давление 1-50 атм и температура 180-250 °С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ. По последним данным, удельная активность кобальтовых катализаторов выше, чем железных .

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР . По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200-360 °С), и позволяют получать более широкий спектр продуктов: парафины, низшие α-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО:Н 2 ниже стехиометрического 1:2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается, и срок их службы составляет несколько недель. Кобальтовые контакты, напротив, способны работать без регенерации год и более. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, кинетика процесса для железных катализаторов неблагоприятна, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м 3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизтопливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.
В синтезе ФТ образуется широкая углеводородная фракция (рис. 1).


Распределение продуктов подчиняется кинетике полимеризации, и доля индивидуальных углеводородов удовлетворяет распределению Андерсона-Шульца-Флори (ASF):
pn = п-(1 - α)2- α n-1, где n - углеродный номер; α - параметр распределения, имеющий физический смысл соотношения между константами скорости роста и обрыва цепи или, иными словами, вероятности роста цепи (рис. 2). Величина α определяется природой катализатора, температурой и давлением процесса. Для каждого класса продуктов, одновременно образующихся на одном и том же контакте (парафины, олефины, спирты), величина а может быть различной. Иногда наблюдается


Включением низших олефинов в растущую цепь;
. крекингом высших парафинов;
- присутствием на поверхности двух и более видов центров полимеризации, каждый из которых обеспечивает свое значение α.
Распределение ASF накладывает ограничение на селективность процесса в отношении индивидуальных углеводородов и их узких фракций. Так, выход бензиновой фракции С5-С10 не может превысить 48%, дизельной фракции С11-С18 - 30%. Однако селективность в отношении твердых парафинов монотонно растет с повышением α и асимптотически приближается к 100 % (рис. 3). Если полученные парафины подвергнуть мягкому гидрокрекингу, выход фракции газойля можно довести до 60 % на прореагировавшее сырье .

Метод Фишера - Тропша по превращению метана в более тяжелые углеводороды был разработан в 1923 г. и реализован в промышленности Германии в 1940-х годах.

Почти все авиационное топливо в этой стране во время второй мировой войны производилось с помощью синтеза Фишера - Тропша из каменного угля. Впоследствии от этого способа изготовления моторных топлив отказались, так как топливо, получаемое при переработке нефти, до последнего времени было экономически более выгодным.

При получении жидкого топлива на основе синтеза Фишера - Тропша разнообразные соединения углерода (природный газ, каменный и бурый уголь, тяжелые фракции нефти, отходы деревообработки) конвертируют в синтез-газ (смесь СО и Н2), а затем он превращается в синтетическую «сырую нефть» - синтнефть. Это - смесь углеводородов, которая при последующей переработке разделяется на различные виды практически экологически чистого топлива, свободного от примесей соединений серы и азота. Достаточно добавить 10% искусственного топлива в обычное дизельное, чтобы продукты сгорания дизтоплива стали соответствовать экологическим нормам.

Еще более эффективной представляется конверсия газа в дорогостоящие продукты тонкого органического синтеза.

Конверсию газа в моторное топливо можно в целом представить как превращение метана в более тяжелые углеводороды:

2nСН4 + 1/2nО2 = Сn Н2n + nН2 О

Из материального баланса брутто-реакции следует, что массовый выход конечного продукта не может превышать 89%.

Реакция напрямую неосуществима. Конверсия газа в жидкое топливо (КГЖ) проходит через ряд технологических стадий (рис.17). При этом в зависимости от того, какой конечный продукт необходимо получить, выбирается тот или иной вариант процесса.

Синтез Фишера-Тропша может рассматриваться как реакция восстановительной олигомеризации монооксида углерода, при которой образуются углерод-углеродные связи, и в общем виде она представляет собой сложную комбинацию ряда гетерогенных реакций, которую можно представить суммарными уравнениями:

nCO + 2nH2 > (CH2)n + nH2 O,

2nCO + nH2 > (CH2)n + nCO2 .

Рис. 17.

Продуктами реакции являются алканы, алкены и кислородсодержащие соединения, то есть образуется сложная смесь продуктов, характерная для реакции полимеризации. Первичными продуктами синтеза Фишера-Тропша являются a- и b-олефины, которые превращаются в алканы в результате последующего гидрирования. Природа применяемого катализатора, температура, соотношение СО и Н2 существенно сказываются на распределении продуктов. Так, при использовании железных катализаторов велика доля олефинов, тогда как в случае кобальтовых катализаторов, обладающих гидрирующей активностью, преимущественно образуются насыщенные углеводороды.

В настоящее время в качестве катализаторов синтеза Фишера-Тропша в зависимости от поставленных задач (повышение выхода бензиновой фракции, увеличение выхода низших олефинов и др.) используются как высокодисперсные железные катализаторы, нанесенные на оксиды алюминия, кремния и магния, так и биметаллические катализаторы: железо-марганцевые, железо-молибденовые и др.

За 70 лет с момента открытия синтеза не утихают споры по поводу механизма реакции. В настоящее время рассматриваются три различных механизма. Первый механизм, называемый карбидным, впервые предложенный Фишером и Тропшем и в дальнейшем нашедший поддержку у других исследователей, предполагает образование С-С-связей в результате олигомеризации метиленовых фрагментов на поверхности катализатора. На первой стадии происходит адсорбция СО и образуется поверхностный карбид, а кислород превращается в воду или СО2:

На второй стадии поверхностный карбид гидрируется с образованием фрагментов СНx (х = 1-3):

Удлинение цепи происходит в результате реакции поверхностных метила и метилена и далее путем внедрения метиленовых групп идет рост цепи:

Стадия обрыва цепи происходит в результате десорбции алкена с поверхности катализатора.

Второй механизм, названный гидроксикарбеновым, предполагает также гидрирование координированного на металле СО с образованием поверхностных гидроксикарбеновых фрагментов, в результате конденсации которых и происходит образование С-С-связей:

Третий механизм, который можно назвать механизмом внедрения, предполагает образование С-С-связей в результате внедрения СО по связи металл-углерод (о способности СО к внедрению по связи металл-алкил говорилось выше):

Накоплен достаточно богатый экспериментальный материал, свидетельствующий в пользу того или иного варианта механизма, однако приходится констатировать, что к настоящему моменту невозможно сделать однозначный выбор между ними. Можно предположить, что в связи с большой важностью синтеза Фишера-Тропша исследования в этом направлении будут интенсивно продолжаться и мы станем свидетелями новых воззрений на механизмы протекающих реакций .


Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Химик Владимир Мордкович о способах получения синтетического топлива, новых типах катализаторов и реакторе Фишера - Тропша.

Владимир Мордкович - доктор химических наук, кафедра физики и химии наноструктур МФТИ, заведующий отделом новых химических технологий и наноматериалов ТИСНУМ, научный директор компании «Инфра Технологии».

Комментарии: 0

    Сланцевый природный газ (англ. shale gas) - природный газ, добываемый из горючих сланцев и состоящий преимущественно из метана. Горючий сланец - твердое полезное ископаемое органического происхождения. Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков.

    Александра Пошибаева

    Сегодня есть две основные гипотезы образования нефти: неорганическая (абиогенная) и органическая (биогенная, и ее также называют осадочно-миграционной). Сторонники неорганической концепции считают, что нефть образовалась из углерода и водорода по процессу Фишера - Тропша на больших глубинах, при огромных давлениях и температурах выше тысячи градусов. Нормальные алканы могут образоваться из углерода, водорода в присутствии катализаторов, однако в природе отсутствуют такие катализаторы. Помимо этого, в нефтях содержится огромное количество изопренанов, циклических углеводородов-биомаркеров, которые по процессу Фишера - Тропша образоваться не могут. О поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов рассказывает химик Александра Пошибаева.

    Андрей Бычков

    Углеводороды сегодня являются энергетической основой нашей цивилизации. Но надолго ли хватит месторождений горючих ископаемых и что делать после их истощения? Как и других полезных ископаемых, нам придется разрабатывать сырье с меньшим содержанием полезного компонента. Как сделать нефть, из какого сырья? Будет ли это выгодно? Уже сегодня мы имеем много экспериментальных данных. В лекции будут обсуждены вопросы о процессах образования нефти в природе и показаны новые экспериментальные результаты. Обо всем этом вам расскажет Бычков Андрей Юрьевич, доктор геолого-минералогических наук, профессор РАН, профессор кафедры геохимии в МГУ.

    Елена Наймарк

    Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.

    Елена Наймарк

    Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул.

    Королёв Ю. М.

    О том, как учёные пытаются разгадать тайну происхождения нефти, а точнее, нефтяных углеводородов, мы попросили рассказать Ю.М. Королёва - ведущего научного сотрудника Института нефтехимического синтеза им. А.В. Топчиева. Он более тридцати лет изучает рентгенографический фазовый состав ископаемых углеводородных минералов и их превращение под действием времени и температуры.

    Родкин М. В.

    Спор о биогенном (органическом) или абиогенном происхождении нефти особенно интересен для российского читателя. Во-первых, углеводородное сырьё - один из основных источников дохода в бюджете страны, а во-вторых, российские учёные - признанные лидеры многих направлений в этом старом, но всё ещё не закрытом научном споре.

    Александр Марков

    В космосе обнаружены разнообразные органические вещества, однако о механизмах их формирования известно немного. Астрофизики и химики из Франции, Дании и Мексики экспериментально показали, что в условиях, имитирующих ранние стадии формирования планетных систем, в водяном льду с примесью метанола и аммиака под действием ультрафиолетового излучения образуются всевозможные углеводы, включая рибозу - важнейшую составную часть РНК. Авторы предполагают, что химический процесс, приводящий к синтезу этих углеводов, схож с автокаталитической реакцией Бутлерова, хотя и не нуждается в присутствии двухвалентных ионов металлов.

    Елена Наймарк

    Миру РНК предшествовало время предбиологического синтеза, когда рождались так или иначе необходимые для репликации молекулы - нуклеотиды, белки, липиды. Прежде химики рассматривали процессы их синтеза по отдельности. Теперь в лаборатории Джона Сазерленда найден путь, который приводит к синтезу сразу большого набора биологических молекул. Нет нужды гадать, что было раньше, РНК или белки, - вероятно, они синтезировались одновременно в едином каскаде химических реакций; в начале его появляется цианистый водород и сероводород с металлическими катализаторами. Эту сеть реакций авторы назвали цианосульфидным протометаболизмом. С выходом в свет нового исследования можно говорить о поворотной точке в науке о происхождении жизни.

    Дмитрий Грищенко

    О добыче сланцевой нефти и газа пишут много и часто. На лекции попробуем разобраться что же представляет из себя данная технология, какие экологические проблемы с ней связаны, а какие - лишь плод воображения журналистов и защитников природы.

Процесс получения

Процесс Фишера – Тропша описывается следующим химическим уравнением

CO + 2 H 2 ----> --CH 2 -- + H 2 O

2 CO + H 2 ----> --CH 2 -- + CO 2 . Смесь монооксида углерода и водорода называется синтез-газ или сингаз. Получаемые углеводороды очищают для получения целевого продукта - синтетической нефти.

После войны взятые в плен германские учёные участвовали в операции «Скрепка» продолжая работать над синтетическими топливами в США в Бюро горной промышленности США.

Впервые синтез углеводородов из смеси СО и Н 2 был осуществлён в начале XX века : Сабатье и Сандеренсом был синтезирован метан , Е. И. Орловым - этилен . В 1913 г компания BASF взяла патент на получение смесей углеводородов и спиртов из синтез-газа над подщелоченными Co-Os катализаторами (в дальнейшем это направление вылилось в создание процесса синтеза метанола). В 1923 г немецкие химики Ф.Фишер и Г.Тропш, сотрудники компании Ruhrchemie, сообщили о получении кислородсодержащих продуктов из синтез-газа над Fe катализаторами, а в 1926 г - углеводородов. Первый промышленный реактор был пущен в Германии в 1935 г, использовался Co-Th осажденный катализатор. В 1930-40-е гг на основе технологии Фишера – Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40-55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75-100 и твёрдого парафина. Сырьем для процесса служил уголь, из котоого газификацией получали синтез-газ, а из него углеводороды. К 1945 г в мире имелось 15 заводов синтеза Фишера – Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн.т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла.

В годы после второй мировой войны синтезу ФТ уделяли большое внимание во всём мире, поскольку считалось, что запасы нефти подходят к концу, и надо искать ей замену. В 1950 г был пущен завод в Браунсвилле (Техас) на 360 тыс. т/г. В 1955 г южноафриканская компания Sasol построила собственное производство, существующее и развивающееся до сих пор. В Новочеркасске с 1952 работала установка мощностью около 50 тыс. т/г, использующая вывезенное из Германии оборудование. Сырьем служил сначала уголь донецкого бассейна, а затем природный газ. Немецкий Co-Th катализатор был со временем заменён на оригинальный, Co-Zr. На заводе была установлена колонна точной ректификации, так что в ассортимент продукции завода входили индивидуальные углеводороды высокой чистоты, в том числе α-олефины с нечетным углеродным номером. Установка работала на Новочеркасском заводе синтетических продуктов вплоть до 1990-х годов и была остановлена по экономическим причинам.

Все эти предприятия в значительной степени заимствовали опыт немецких химиков и инженеров, накопленный в 30-40-е годы.

Открытие обширных месторождений нефти в Аравии, Северном море, Нигерии, Аляске резко снизило интерес к синтезу ФТ. Почти все существующие заводы были закрыты, единственное крупное производство сохранилось в ЮАР. Активность в этой области возобновилась к 1990-м годам.

В 1990 г компания Exxon запустила опытную установку на 8 тыс. т/г с Co катализатором. В 1992 г южноафриканская компания Mossgas построила завод мощностью 900 тыс. т/г. В отличие от технологии Sasol, в качестве сырья здесь использовался природный газ с шельфового месторождения. В 1993 году компания Shell запустила завод в Бинтулу (Малайзия) мощностью 500 тыс. т/г, используя Co-Zr катализатор и оригинальную технологию «средних дистиллятов». Сырьем служит синтез-газ, получаемый парциальным окислением местного природного газа. В настоящее время Shell строит завод по той же технологии, но на порядок большей мощности в Катаре. Свои проекты в области синтеза ФТ разной степени проработки имеют также компании Chevron , Conoco , , ENI , Statoil , Rentech, Syntroleum и другие.

Научные основы процесса

Синтез ФТ можно рассматривать как восстановительную олигомеризацию оксида углерода:

nCO + (2n+1)H 2 → C n H 2n+2 + nН 2 О

nCO + 2nH 2 → C n H 2n + nН 2 О

Тепловой эффект значителен, 165 кДж/моль СО.

Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, так силикагель и глинозём. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан (n=1), при повышении же давления никель образует летучий карбонил и вымывается из реактора.

Побочными реакциями синтеза углеводородов из СО и Н 2 являются:

  • гидрирование оксида углерода до метана : СО + 3Н 2 → СН 4 + Н 2 О + 214 кДж/моль
  • реакция Белла – Будуара (диспропорционирование СО): 2СО → СО 2 + С
  • равновесие водяного газа: СО + Н 2 О ↔ СО 2 + Н 2

Последняя реакция имеет особое значение для катализаторов на основе железа, на кобальте она почти не протекает. На железных катализаторах, кроме того в значительных количествах образуются кислородсодержащие соединения - спирты и карбоновые кислоты.

Типичными условиями проведения процесса являются: давление от 1 атм (для Co катализаторов) до 30 атм, температура 190-240 °C (низкотемпературный вариант, для Co и Fe катализаторов) или 320-350 °C (высокотемпературный вариант, для Fe).

Механизм реакции, несмотря на десятилетия его изучения, в деталях остаётся неясен. Впрочем, эта ситуация типична для гетерогенного катализа.

Термодинамические закономерности для продуктов синтеза ФТ таковы:

  1. Возможно образование из СО и H 2 углеводородов любой молекулярной массы, вида и строения кроме ацетилена .
  2. Вероятность образования углеводородов уменьшается в ряду: метан > другие алканы > алкены . Вероятность образования нормальных алканов уменьшается, а нормальных алкенов повышается с увеличением длины цепи.
  3. Повышение общего давления в системе способствует образованию более тяжелых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Реальный состав продуктов синтеза углеводородов из СО и Н 2 существенно отличается от равновесного. В большинстве случаев распределение продуктов по молекулярной массе в стационарных условиях описывается формулой p(n) = n(1-α)²α n-1 , где p(n) - массовая доля углеводорода с углеродным номером n, α = k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи, соответственно. Это т. н. распределение Андерсона – Шульца – Флори (ASF distribution). Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина α снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину α. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции. Это вторая, после теплосъема, проблема синтеза ФТ.

Использование

В настоящее время две компании коммерчески используют свои технологии, основанные на процессе Фишера – Тропша. Shell в Бинтулу, Малазия , использует природный газ в качестве сырья и производит, преимущественно, малосернистое дизельное топливо . Sasol в Южной Африке использует уголь в качестве сырья для производства разнообразных товарных продуктов из синтетической нефти. Процесс и сегодня используется в ЮАР для производства большей части дизельного топлива страны из угля компанией Sasol. Процесс использовался в ЮАР для удовлетворения потребностей в энергии во время изоляции при режиме апартеида . Внимание к этому процессу возобновилось в процессе поиска путей получения малосернистых дизельных топлив для уменьшения наносимого дизельными двигателями вреда окружающей среде. Маленькая американская компания Rentech в настоящее время сфокусировалась на преобразовании заводов по производству азотистых удобрений от использования в качестве сырья природного газа к использованию угля или кокса и жидких углеводородов в качестве побочного продукта.

В сентябре 2005 губернатор Эдвард Ренделл заявил о создании предприятия Waste Management and Processors Inc. - использующее технологии, лицензированные у Shell и Sasol. Будет построена фабрика, использующая синтез Фишера – Тропша для переработки так называемого бросового углерода (остатков от угледобычи) в малосернистое дизельное топливо на участке около города Mahanoy на северо-западе Филадельфии . Штат Пенсильвания взял на себя обязательство покупать значительный процент продукции завода и, вместе с Департаментом энергетики США (DoE), предложил более 140 миллионов долларов налоговых льгот. Прочие добывающие уголь штаты также разрабатывают подобные планы. Губернатор штата Монтана Бриан Швейцер (Brian Schweitzer) предложил построить завод, который будет использовать процесс Фишера – Тропша для превращения угольных запасов штата в топливо, чтобы уменьшить зависимость США от импорта нефти .

В начале 2006 года в США рассматривались проекты строительства 9 заводов по непрямому сжижению угля суммарной мощностью 90 – 250 тыс. баррелей в день.

Китай планирует инвестировать 15 млрд долл. до 2010-2015 гг. в строительство заводов по производству синтетического топлива из угля. Национальная Комиссия Развития и Реформ (NDRC) заявила, что суммарная мощность заводов по сжижению угля достигнет 16 млн тонн синтетического топлива в год, что составляет 5 % от потребления нефти в 2005 году и 10 % импорта нефти.

Технологии переработки угля в жидкое топливо порождают множество вопросов со стороны экологов. Наиболее серьёзной является проблема выбросов углекислого газа. Последние работы Национальной лаборатории по возобновляемым источникам энергии США (National Renewable Energy Laboratory) показали, что в полном цикле выбросы парниковых газов для произведённых из каменного угля синтетических топлив примерно вдвое выше своего основанного на бензине эквивалента. Выбросы прочих загрязнителей также сильно увеличились, тем не менее, многие из них могут быть собраны в процессе производства. Захоронение углерода было предложено в качестве способа уменьшения выбросов оксида углерода. Закачка C O 2 в нефтяные пласты позволит увеличить добычу нефти и увеличить срок службы месторождений на 20-25 лет, однако использование данной технологии возможно лишь при устойчивых нефтяных ценах выше 50-55 долл. за баррель. Важной проблемой при производстве синтетического топлива является и высокое потребление воды, уровень которого составляет от 5 до 7 галлонов на каждый галлон полученного топлива.

Выбор редакции
Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Российский государственный...

Одной из важнейших составляющих менеджмента в любой организации является система контроля, получившая название комплаенс. В переводе с...

Слайд 2 Моза́ика (фр. mosaïque, итал. mosaico от лат. (opus) musivum - (произведение) посвящённое музам) - декоративно-прикладное и...

Уважаемые родители! Во исполнение распоряжения Правительства РФ от 17.10.2009 № 1993-р «Об утверждении сводного перечня...
Наступление весны влечёт за собой значительные перемены в пернатом населении наших садов, лесов и полей. С появлением первых проталин и...
Как-то незаметно вошло в наш повседневный обиход словосочетание «резать косты» (от английского слова «costs» – «издержки»). Хотя у нас не...
Слайд 1Если льёт слеза из глаза Вкус припомните вы сразу Я, конечно, всем нужна Без меня не сваришь ужин Не засолишь огурца Не заправишь...
Выдающиеся цифровые методы обработки фотографий голландца Киса Венебоса были продемонстрированы в National Geographic и на сайте НАСА....
Введение Каждый человек за свою трудовую жизнь работает, как правило, в одной или нескольких организациях, проходит в них через целый...