Стадии дробления. Способы и процессы дробления полезных ископаемых


ТЕМА 5 ФИЗИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА РАЗРУШЕНИЯ ГОРНЫХ ПОРОД

1. Способы разрушения горных пород при дроблении и измельчении.

2. Свойства горных пород, имеющие значение при разрушении.

3. Стадии дробления. Степень дробления.

4. Гипотезы дробления и измельчения.

Процессы дробления и измельчения применяются для доведения материала до необходимой крупности, гранулометрического состава или заданной степени раскрытия минералов, т. е. для получения свободных минеральных зерен. При этом куски горных пород разрушаются внешними силами. Разрушение – это процесс зарождения и роста трещин и пор. Происходит по ослабленным сечениям, имеющим трещиноватости или другие дефекты структуры. Разрушение наступает после перехода за предел прочности нормальных и касательных напряжений, возникающих в материале при его упругих деформациях: сжатии, растяжении, изгибе или сдвиге. Предел прочности – предельное значение напряжения, выше которого образец разрушается практически мгновенно, а ниже – живет неограниченно долго .

Различные способы дробления и измельчения отличаются видом основной необратимой деформации, вызвавшей разрушение. В соответствии с этим способы разрушения делятся на (рис. 2.1):

1) раздавливание – наступает после перехода напряжений за предел прочности на сжатие;

2) раскалывание – после перехода напряжений за предел прочности на растяжение;

3) излом - после перехода напряжений за предел прочности на изгиб;

4) срезывание - после перехода напряжений за предел прочности на сдвиг;

5) истирание - после перехода напряжений во внешних слоях кусков за предел прочности на сдвиг;

6) удар – воздействие динамических нагрузок на материал, деформации возникают те же: сжатие, растяжение, изгиб, сдвиг.

Срезывание Истирание Удар

Рисунок 2.1 – Способы разрушения материалов

Эти способы разрушения являются общими и для операций дробления, и для операций измельчения, однако эти процессы различаются по своему технологическому назначению. Принято считать дроблением такой процесс разрушения, в результате которого большая часть продукта имеет крупность выше 5 мм. При измельчении получают продукт мельче 5 мм. Размер 5 мм принят условно.

Все машины, применяемые для разрушения кусков горных пород делятся по технологическому назначению на дробилки и мельницы. Отличительными особенностями этих типов машин являются:

Дробилки – 1) между дробящими телами всегда есть зазор, который свободен на холостом ходу и заполнен материалом на рабочем ходу; 2) выдают в основном кусковой продукт с преобладанием крупных фракций.

Мельницы – 1) измельчающие детали соприкасаются на холостом ходу, а на рабочем – разделены слоем материала; 2) выдают порошкообразный продукт с преобладанием мелких фракций.

В различных конструкциях машин могут использоваться сразу несколько способов разрушения, но преобладающим является один из них:

Раздавливание – в щековых, валковых и конусных дробилках;

Раскалывание – в зубчатых и игольчатых дробилках;

Удар – в молотковых дробилках и дезынтеграторах;

Истирание – в мельницах.

Для процессов разрушения наиболее важны прочность (крепость), дробимость, измельчаемость и абразивность горных пород. Прочность – способность твердого тела сопротивляться разрушению от действия внешних сил. Характеризуется предельными напряжениями, которые могут быть созданы в опасном сечении тела.

С точки зрения физико-механических свойств пород наиболее выгодно разрушать их растяжением. Но по конструктивным соображениям в основном используется раздавливание. Поэтому для сравнения прочностных свойств пород используют напряжение на сжатие или коэффициент крепости, разработанный проф. Протодьяконовым М. М. По шкале Протодьяконова все породы делятся на 10 категорий с коэффициентами крепости от 0.3 для самых слабых до 20 для наиболее прочных пород.

Дробимость – это обобщающий параметр для многих механических свойств пород и выражает энергоемкость процесса дробления.

Измельчаемость оценивают по удельной производительности мельницы по вновь образованному расчетному классу.

Абразивность оценивают по износу материала рабочих поверхностей машин в процессе дробления (измельчения) при трении.

Оценка результатов дробления (измельчения) производится по степени дробления (измельчения) и эффективности работы машин. Степень дробления – отношение размеров кусков исходного материала к размеру кусков продукта дробления.

I = D / d, (2.1)

Где i – степень дробления, D, d – средний или максимальный размер куска в питании и дробленом продукте, соответственно.

Нет таких дробильных машин, которые могли бы принимать исходную руду и выдавать конечный продукт. Поэтому применяют несколько приемов (стадий) дробления (см. схему). В зависимости от крупности исходного и дробленого материала различают следующие стадии дробления и измельчения, показатели для которых приведены в табл. 2.1.

Таблица 2.1 – Стадии дробления и измельчения

При дроблении (измельчении) в несколько последовательных стадий общая степень дробления (измельчения) определяется как произведение всех степеней дробления в отдельных стадиях:

I = i 1 i 2 i 3 i n. (2.2)

Дробилки (мельницы) могут работать в открытом или замкнутом цикле. При открытом цикле материал проходит дробилку один раз, при замкнутом - надрешетный продукт грохота непрерывно возвращается в дробилку на додрабливание, образуя циркулирующую нагрузку. В случае мельниц – пески (крупный продукт) гидроциклона или классификатора возвращаются на доизмельчение. Замкнутые циклы обеспечивают более высокую степень дробления (измельчения) по сравнению с открытыми.

Если продукт дробления представляет собой свободные зерна полезного минерала, то дальнейшее дробление не имеет смысла, т. к. будет только приводить к переизмельчению материала. Процесс является энергоемким, поэтому проф. Г. О. Чечет сформулировал принцип НЕ ДРОБИТЬ НИЧЕГО ЛИШНЕГО. При разрушении происходит преодоление сил сцепления между частицами и образование новой поверхности. Энергия, потребляемая при дроблении (измельчении) расходуется на: 1) упругую деформацию разрушаемых зерен, т. е. рассеивается в окружающее пространство в виде тепла; 2) образование новой поверхности, т. е. превращается в свободную поверхностную энергию измельченных зерен. При измельчении расход полезной энергии – на образование новой поверхности – составляет около 1% общего ее расхода.

Пусть разрушается зерно в виде куба с размером d, представленное на рис. 2.2.


Рисунок 2.2 – Изменение суммарной поверхности зерен при дроблении

Тогда поверхность частиц будет:

До дробления: S 1 = 6 d 2 1Кубик. (2.3)

После дробления: S 2 = 6 (d / 2) 2 8Кубиков = 6 d 2 2; (2.4)

S 3 = 6 (d / 3) 2 27 = 6 d 2 3; (2.5)

………………….. ; (2.6)

S n = 6 d 2 n. (2.7)

Здесь n – количество частиц.

Таким образом, при уменьшении размеров кусков руды происходит увеличение общей поверхности частиц.

Для оценки порошкообразных материалов используется понятие удельной поверхности, т. е. поверхности, приходящейся на единицу веса материала. В данном случае:

S yд = 6 d 2 / d 3 δ = 6 /d δ . (2.8)

Обозначим 6 / δ = К. Для частиц малого размера К = соnst.

При дроблении Q весовых единиц материала со средним размером кусков D получим столько же весовых единиц материала со средним размером d. Поверхность материала до дробления:

S 1 yд = K Q / D. (2.9)

После дробления:

S 2 yд = K Q / d. (2.10)

Вновь образованная при дроблении поверхность будет:

ΔS = S 2 – S 1 = K Q / d – K Q / D = K (1 / d – 1 / D) Q (2.11)

Известно несколько гипотез энергетической оценки процессов дробления и измельчения. Одна из них – гипотеза Риттингера (1867г): Расход энергии на дробление пропорционален величине вновь образованной поверхности. В математическом выражении имеет вид:

E = K 0 ΔS = K 0 К (1 / d – 1 / D) Q. (2.12)

Здесь E – расход энергии, K 0 – коэффициент пропорциональности, по физическому смыслу представляет собой расход энергии на образование одной квадратной единицы новой поверхности.

Обозначим: Ko K = K1 . (2.13)

Тогда E = K1 (1/d – 1/D) Q. (2.14)

Умножим и разделим правую часть уравнения (2.14) на D, получим

E = K1 (1/d – 1/D) Q D/ D = K1 (D /d – D /D) Q / D = K1 (i – 1) Q / D. (2.15)

Таким образом, по Риттингеру расход энергии на дробление одной весовой единицы материала пропорционален степени дробления i минус единица.

По гипотезе Кирпичева (1874г.) и Кика (1885г.) энергия, необходимая для дробления и измельчения материала пропорциональна его весу (или объему):

E1 = K0 Q. (2.16)

Из выражения (2.16) следует, что затрачиваемая энергия не зависит от крупности материала. Коэффициент Ко выражает расход энергии на единицу веса при данной степени измельчения. Можно выбрать схему с одинаковыми степенями дробления в каждой стадии:

I 1 = i 2 = i 3 = …..= i n. (2.17)

Тогда с учетом (2.17) общая степень дробления составит:

Где n – число стадий дробления.

При этом энергии дробления в каждой стадии будут равны между собой:

E 1 = E 2 = E 3 . (2.19)

С учетом выражений (2.16) и (2.19) общая энергия дробления по всей схеме будет:

E = K0 Q n. (2.20)

Для исключения степени в выражении (2.18) выполним его логарифмирование и выразим n:

Lg I = n lg i, (2.21)

N = lg I / lg i (2.22)

Подставим соотношение (2.22) в формулу (2.20) и получим:

E = K0 Q lg I / lg i. (2.23)

Для одного и того же материала и при одной и той же степени дробления в каждой стадии величины К0 и i будут постоянными, поэтому можно обозначить

K2 = K0 / lg I, (2.24)

Тогда энергия дробления (измельчения) определится с учетом соотношения (2.23) как:

E = K2 Q lg I, (2.25)

Математическое выражение для степени дробления (2.1) можно представить в виде

D / d = (1/d) / (1/D). (2.26)

Lg I = lg [ (1/d) / (1 / D)] = lg (1 / d) – lg (1 / D). (2.27)

С учетом соотношений (2.25) и (2.27) выражение для энергии дробления будет иметь вид:

E = K2 [ lg (1 / d) – lg (1 / D) ] Q. (2.28)

Формула (2.28) представляет собой математическое выражение гипотезы Кика-Кирпичева аналогично выражению гипотезы Риттингера. По Риттингеру расход энергии пропорционален поверхности, по Кику-Кирпичеву – объему. Соответственно эти законы носят название поверхностного и объемного законов дробления (измельчения). Данные экспериментов и промышленной практики показали, что эти законы справедливы лишь в определенных диапазонах крупности. Гипотеза Риттингера хорошо согласуется с практикой при тонком измельчении, а гипотеза Кика-Кирпичева – при крупном дроблении.

Академик Ребиндер (1941г.) предложил гипотезу, охватывающую любой случай разрушения полезных ископаемых, математическое выражение которой имеет вид:

A = σ ΔS + K ΔV. (2.29)

Здесь A – работа, затрачиваемая на разрушение твердого тела, σ – поверхностная энергия на единицу твердой поверхности (σ - избыток свободной энергии в пограничном слое), ΔS – поверхность, вновь образуемая при разрушении, ΔV – часть объема тела, подвергшаяся деформации, K – работа упругой и пластической деформации, приходящаяся на единицу объема.

При крупном дроблении больших кусков руды K ΔV >> σ ΔS, т. к. приращение поверхности незначительно, и работа будет в основном пропорциональна объему (гипотеза Кирпичева):

AK ≈ K ΔV = КK D 3. (2.30)

При разрушении мелких кусков руды (измельчение) σ ΔS >> K ΔV, т. к. приращение поверхности значительно. При этом работа почти пропорциональна величине новой образованной поверхности (гипотеза Риттингера):

AR ≈ σ ΔS = KR D 2. (2.31)

Гипотеза Ребиндера связывает процесс разрушения с физико-механическими свойствами пород и минералов (поверхностная энергия, твердость).

Разделим обе части уравнения (2.29) на ΔS и получим:

A / ΔS = σ ΔS / ΔS + K ΔV / ΔS, (2.32)

A / ΔS = σ + K ΔV / ΔS. (2.33)

Обозначим в выражении (2.33):

σ + K ΔV / ΔS = H s . (2.34)

Тогда с учетом соотношений (2.33) и (2.34) получим:

H s = A / ΔS. (2.35)

Величину H s надо рассматривать как коэффициент твердости, равный работе образования единицы новой поверхности. Вместе с тем величина H s связана с поверхностной энергией соотношением (2.34). Таким образом, чем больше поверхностная энергия твердого тела, тем больше его твердость, а, следовательно, и больше работа, которую надо затратить на разрушение – образование новой поверхности.

Гипотеза Ребиндера пригодна для любого диапазона крупности, т. к. она сводится к закону Риттингера или Кирпичева при определенных значениях крупности. Эта гипотеза учитывает оба вида энергии – поверхностную и потенциальную энергию деформации в объеме дробимого тела.

Американский ученый Бонд (1950г.) предложил гипотезу, промежуточную по отношению к законам Риттингера и Кирпичева:

По гипотезе Бонда элементарная работа пропорциональна приращению параметра, являющегося среднегеометрическим между объемом и поверхностью:

Практика показывает определенную связь между индексом работы по Бонду и коэффициентом крепости пород по Протодьяконову.

Дроблением и измельчением называются процессы умень-шения размеров кусков или зерен полезных ископаемых пу-тем разрушения их под действием внешних сил.

В зависимости от характера внешних силразличают сле-дующие применяемые в промышленности процессы:

- обычное дробление и измельчение, осуществляемое за счет использования обычных механических сил;

- самоизмельчение при взаимном воздействии зерен друг на друга;

- электрогидравлическое дробление под действием удар-ных волн , возникающих при прохождении электрического за-ряда через жидкость;

- взрывное дробление или измельчение, основанное на рас-паде пород под действием внутренних сил растяжения при быстром снятии с них внешнего давления;

- вибрационное измельчение в поле вибрационных сил;

- центробежное измельчение в центробежном поле;

- струйное измельчение за счет кинетической энергии дви-жущихся с высокой скоростью навстречу друг другу частиц.

Наиболее широко из них используется на предприятиях цветной, черной, угольной, горно-химической, строительной и других отраслей промышленности обычное дробление, из-мельчение и самоизмельчение.

Принципиальной разницы между процессами дробления и измельчения нет. Условно считают, что при дроблении полу-чают продукты крупнее, а при измельчении мельче 5 мм. Для дробления применяют дробилки, а для измельчения - мельницы.

Процессы дробления и измельчения по своему назначе-нию могут быть подготовительными и самостоятельными .

Целью подготовительного дробления и измельчения по-лезных ископаемых перед их обогащением является раскры-тие (разъединение) минералов при минимальном их переиз-мельчении в результате разрушения минеральных сростков. Конечная крупность дробления или измельчения определяется крупностью вкрапленности извлекаемых минералов. Чем пол-нее раскрыты зерна разделяемых минералов, тем эффективнее последующий процесс обогащения. В некоторых случаях, да-же при достаточно полном раскрытии минералов, необходи-мость подготовительного дробления или измельчения обу-словлена технико-экономическими соображениями или огра-ничениями по крупности, свойственными применяемому ме-тоду обогащения. Например, максимальная крупность мате-риала при сухом магнитном обогащении не должна превы-шать 50 мм.

Дробление и измельчение называются самостоятельными, если получаемый продукт не подвергается обогащению, а яв-ляется товарным и подлежит непосредственному использова-нию (угли перед их коксованием; известняки и доломиты, ис-пользуемые в качестве флюсов; камень при изготовлении щеб-ня и др.). Крупность дробленых или измельченных продук-тов в этом случае определяется предъявляемыми к ним конди-циями (ТУ, ГОСТами).


Если минералы обладают резко различными физико-ме-ханическими свойствами, то в результате дробления или из-мельчения более твердые и прочные из них будут представле-ны более крупными кусками и зернами, чем хрупкие и менее твердые минералы. Такое дробление или измельчение называ-ется избирательным и применяется перед обогащением по крупности.

Размер максимальных кусков руды или угля, поступаю-щих с горных цехов на обогатительные фабрики, достигает 1000-1500 мм, тогда как необходимая крупность материала, поступающего на обогащение, обычно менее 10 мм, а при ис-пользовании флотационных методов она может быть меньше 0,1 мм. Добиться сокращения размера кусков с 1500 до 0,1 мм за один прием практически невозможно, поэтому дробление и измельчение осуществляются стадиально.

Интенсивность процесса дробления в каждой стадии ха-рактеризуется степенью дробления i i равной отношению раз-меров максимальных кусков в исходном D m ах и дробленом d m а x продуктах, т. е.:

Общая степень дробления равна произведению степеней дробления всех стадий:

В зависимости от крупности дробимого материала и дробленого продукта различают:

- крупное дробление (от 1500-300 до 350-100 мм), или пер-вая стадия дробления (i обычно не более 5);

- среднее дробление (от 350-100 до 100-40 мм), или вто-рая стадия дробления (i не более 8-10);

- мелкое дробление (от 100-40 до 30-5 мм), или третья ста-дия дробления (i не более 10).

Измельчение также осуществляется обычно в несколько стадий. Степень измельчения при этом оценивают или соот-ношением размеров максимальных зерен в исходном и из-мельченном продуктах, или процентным содержанием опре-деленного класса крупности (+0,100 мм; -0,074 или -0,044 мм) в измельченном продукте. Измельчение считают грубым, если содержание класса -0,074 мм в измельченном продукте составляет 20-40 %, и тонким, если его содержание превышает 75 %.

Дробление и особенно измельчение являются весьма энергоемкими процессами, потребляющими более половины всей энергии, расходуемой на обогатительной фабрике. По-этому при осуществлении их на практике всегда руковод-ствуются принципом: «Не дробить ничего лишнего». И если в исходном продукте содержится достаточное количество гото-вого класса, то его выделяют перед дроблением или измель-чением путем грохочения или классификации.

Определение величины энергии, затрачиваемой на преодоление внутренних сил сцепления зерен при их разрушении, является одной из основных задач в теории дробления и измельчения.

Для изменения междуатомного расстояния в структурной решетке кристаллического твердого тела требуется работа деформации (сжа-тие, растяжение, сдвиг или изгиб). В пределах упругости атомы возвращаются в свое первоначальное положение. В горных породах предел упругости и предел разрушения часто совпадают.

В зернах горных пород действуют силы сцепления внутри кри-сталлов и силы между отдельными кристаллами. Они имеют одина-ковую физическую природу и различаются между собой только величиной. Первые силы во много раз превышают вторые.

Все горные породы содержат в себе зоны ослабления (дефекты) структуры микро- и макротрещины, что в большой степени влияет на зерновой состав продуктов измельчения и удельный расход энергии.

Таким образом, величина внутренних сил взаимного сцепления частиц горной породы, которые необходимо преодолеть при ее дроблении или измельчении, определяется природой и структурой кристаллов, входя-щих в состав этой породы, а также величиной дефектов структуры, микро- и макротрещин.

Процесс дробления и измельчения горных пород вначале про-исходит по трещинам и наиболее слабым местам после перехода за предел прочности нормальных и касательных напряжений, возни-кающих в материале. Затем идет разрушение более однородной массы. При весьма тонком измельчении сопротивление материала разруше-нию резко возрастает.

Энергия, идущая на дробление и измельчение, расходуется на упругую деформацию разрушаемых зерен, рассеивается в окружа-ющее пространство в виде тепла и на образование новой поверхности и превращается в свободную поверхностную энергию измельченных зерен.

По Кирпичеву-Кику , расход энергии на дробление материала пропорционален его объему или массе (весу).

При деформациях сжатия, растяжения и изгиба, когда действуют нормальные напряжения, работа разрушения одного крупного куска с малой степенью дробления пропорциональна изменению его объема Δv

Так как Δv пропорционально первоначальному объему куска Δv = k 1 v , то

где k, k 1 , k 2 , k к и k 0 — коэффициенты пропорциональности; М — масса (вес) куска; D — диаметр куска.

Таким образом, работа дробления пропорциональна объему или массе дробимого зерна.

Уравнения (3.4) и (3.5) справедливы при дроблении крупных кусков с малой степенью дробления, когда величиной энергии, расходуемой на образование новой поверхности, можно пренебречь.

Предположим, что в дробление поступает G т исходного материала, состоящего из зерен различной крупности и формы.

Определим работу дробления G т материала по отдельным стадиям (условия аналогичны предыдущему случаю).

Работа дробления G т материала, состоящего из N кусков одина-ковой массы М, равна (по формуле Кирпичева-Кика):

При i = r n работа дробления по стадиям составит:

Работа дробления G т материала при общей степени дробления i равна

Подставив п в формулу (3.59), получим

По Риттингеру работа, затраченная на измельчение, пропорциональна величине вновь образованной поверхности. Пред-положим, что зерно в виде куба с ребром D разрушается до куба с ребром d. Число полученных кубов

Поверхности куба S 1 и полученных кубов S 2 соответственно равны:

Вновь образованная поверхность

где i — степень измельчения.

Работа, расходуемая на измельчение этого зерна, равна

где А 0 — работа образования единицы новой поверхности.

Работа измельчения пропорциональна поверхности дробимого зерна.

Удельная работа А 0 образования новой поверхности зависит от природы материала, его крупности, степени и способа измельчения.

Закон Риттингера справедлив при измельчении полезных ископае-мых с большими степенями, когда энергия расходуется на образова-ние новой поверхности. В этом случае энергия расходуется в основном на деформацию сдвига при переходе касательных напряжений за предел прочности. Закон Риттингера не учитывает изменения сопро-тивления материала измельчению в данной мельнице по мере умень-шения его крупности.

Предположим, что в измельчение поступает Q исходного материала, состоящего из зерен различной крупности и формы. Пусть D и d — средние диаметры зерен до и после измельчения; во всех стадиях одинаковая степень измельчения r , а число стадий равно п, т. е.

где i — общая степень измельчения.

Тогда работу измельчения Q тонн материала по отдельным ста-диям согласно закону Риттингера можно определить по формулам.

где δ — плоскость материала; - коэффициенты пропорциональности.

Общая работа измельчения

Сумма членов геометрической прогрессии со знаменателем г равна

Следовательно,

По Ребиндеру , работа, затрачиваемая на измельчение материала, представляет собой сумму работ, расходуемых на его деформацию и на образование новой поверхности:

где А Д — работа упругих деформаций; А S — работа образования новой поверхности; k — коэффициент пропорциональности, пред-ставляющий собой работу деформации в единице деформируемого объема зерна; Δv — изменение объема деформируемого зерна; А 0 — коэффициент пропорциональности, представляющий собой затрату работы на образование единицы новой поверхности; ΔS — вновь образованная поверхность при измельчении.

По Ребиндеру, процесс упругой деформации тела характеризуется наведением в нем новой поверхности (трещины). При предельной объемной концентрации в теле трещин наступает его разрушение. Между процессами упругой деформации и разрушения с точки зрения образования поверхности разницы не существует.

Установленная П. А. Ребиндером зависимость позволяет рас-сматривать процесс измельчения как единое целое и в то же время анализировать его. Работа образования новой поверхности А S является полезной, а работа упругих деформаций A Д — потерей.

Тогда коэффициент полезного процесса измельчения

Таким образом, для повышения к. п. д. измельчения следует:

По возможности увеличивать А S (т. е. измельчать материал при максимальном перенапряжении);

Применять поверхностно-активные вещества, которые снижают предел упругих напряжений.

Между дроблением крупных кусков с малой степенью, описыва-емым уравнением (3.3), и измельчением с большой степенью, описы-ваемым уравнением (3.8), имеются крупное, среднее и мелкое дробле-ние со средними степенями дробления, для которых необходимо учитывать обе составляющие уравнения (3.10). Для превращения правой части этого уравнения в одночлен сделано допущение, что работа, расходуемая на дробление, пропорциональна среднему геометрическому из объема и поверхности разрушаемого зерна и составляет

Формула (3.12) выражает работу на дробление по Бонду .

В дальнейшем принимается, что измельчение зерна от крупности D до крупности d производится в n приемов с постоянной однократной степенью измельчения r . Тогда в первом приеме измельчения полу-чится r 3 зерен размером D/r и затрачивается работа

Соответственно во втором и n- мприемах измельчения:

Общая работа, расходуемая на измельчение,

Сумма геометрической прогрессии со знаменателем r 0,5

Следовательно,

Определим работу на измельчение G т материала.

Число зерен кубической формы с ребром D в G т материала

где δ — плотность материала.

Тогда работа на измельчение G т материала

Так как, то

В этой формуле неизвестными являются k 0 и r .

Пользуясь выражением (3.14), можно приближенно определить работу для крупного, среднего и мелкого дробления со средними степенями дробления.

Формулы (3.9), (3.7), (3.10), (3.14) можно использовать для сравнительной оценки процессов дробления (измельчения), когда не нужно знать величины коэффициентов пропорциональности.

Отношение размеров кусков или зерен исходного материала перед дроблением и измельчением к размеру кусков или зерен дробленого или измельченного продукта называют степенью дробления или степенью измельчения.

Со степенью дробления связаны расход энергии и производительность дробилок и мельниц. Для определения степени дробления предложено несколько расчетных формул. Обычно ее определяют как отношение размеров максимальных по крупности кусков материала до и после дробления.

В практике обогащения диаметром кусков сыпучих материалов считают наименьшую величину отверстий сит, через которые при грохочении куски еще проходят. Поэтому степень дробления вычисляют как отношение диаметров предельных отверстий сит для грохочения дробимого материала и дробленого продукта. Форма отверстий сита при этом должна быть одинаковой, так как она влияет на результаты грохочения .

Степень дробления, рассчитанная по вышеприведенной формуле, характеризует процесс дробления недостаточно полно. Допустим, что при дроблении двух материалов, имеющих одинаковые исходные характеристики крупности, получены продукты с одинаковыми максимальными кусками, но с разными характеристиками крупности (рис. 1.5.1).

Суммарная характеристика «по плюсу» для одного продукта выпуклая, а для другого - вогнутая. Это означает, что второй продукт раздроблен мельче, чем первый, но если подсчитать степени дробления по отношению размеров максимальных кусков, то они окажутся одинаковыми. Отсюда следует, что степень дробления более правильно вычислять как отношение средних диаметров, которые находятся с учетом характеристик крупности исходного материала и продукта дробления:

где Dcp - средний диаметр кусков исходного материала; dcp - средний диаметр кусков дробленого продукта.

На обогатительных фабриках дробление и измельчение полезных ископаемых перед обогащением обычно выполняются с высокой степенью сокращения размеров кусков. Например, перед флотационным обогащением полезное ископаемое измельчают до крупности < 0,1 мм. Если при этом руда поступает с карьеров, то размер максимальных кусков в исходном материале может доходить до 1500 мм. Тогда общая степень сокращения размеров составит

i= 1500/0,1 = 15 000.

Получение таких высоких степеней сокращения размеров в одной машине практически невозможно. По своим конструктивным особенностям машины для дробления и измельчения эффективно работают только при ограниченных степенях сокращения размеров кусков, а потому рациональнее дробить и измельчать материал от исходной крупности до требуемого размера в нескольких последовательно работающих дробильных и измельчающих машинах. В каждой из таких машин будет осуществлена лишь часть общего процесса дробления или измельчения, называемая стадией дробления, или измельчения.

В зависимости от крупности дробимого материала и дробленого продукта стадии дробления имеют особые названия: первая стадия - крупное дробление от 1500...300 до 350... 100 мм; вторая стадия - среднее дробление от 350... 100 до 100...40 мм; третья стадия - мелкое дробление от 100...40 до 30...5 мм (пределы крупности исходного и дробленого продукта, ограничивающие стадии, условны и приблизительны).

Известны случаи, когда дробление осуществляется в четыре стадии. Например, четырехстадийные схемы дробления применены на некоторых обогатительных фабриках для железных руд, содержащих значительное количество крупных плоских кусков.

Последующую операцию, в которую поступает материал после мелкого дробления (куски размером < 30 мм), называют измельчением. В зависимости от требуемой крупности материала перед обогащением его можно измельчать в одну, две или даже три последовательные стадии, которые соответственно называют первой, второй и третьей стадиями измельчения.

Дробление и особенно измельчение - весьма энергоемкие операции, на которые расходуется около половины энергии, потребляемой обогатительной фабрикой.

Цель: Изучение процессов и способов дробления полезных ископаемых.

План:

1.
Назначение операций дробления.

2.
Законы дробления.

Ключевые слова: дробление, качество дробления, мягкие руды, средние, твердые руды, методы разрушения, раскалывание, излом, удар, истирание, срезывание, крупное, среднее, мелкое дробление, степень дробления, работа дробления, уравнение Риттингера.

1. Дробление и измельчение – процессы разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия минералов. При дроблении и измельчении не следует допускать переизмельчения материала, так как это ухудшает результаты обогащения полезных ископаемых (тонкие частицы крупностью менее 20 – 10 мкм обогащаются неудовлетворительно) и удорожает процесс. Дробление -

.

Производительность труда рабочего при ручном дроблении колеблется в широких пределах. При дроблении, твердой породы она составляет в смену 1,0- 1,5. При дроблении отдельных кусков па колосниковых решетках с отверстиями размеров 450х360 мм бригада в 10-12 рабочих может обеспечить пода­чу на фабрику до 400 т руды в смену.



Механическое дробление и измельчение

Основным способом дробления является механическое дробление, при котором к материалу прилагаются усилия за счет энергии движения дробящего тела. Расход энергии колеблется к весьма широких пределах в зависимости от свойств руды, глав­ным образом от крупности дробления. Он становится особенно большим при тонком и сверхтонком измельчении.

Дезинтеграция в водной среде

Особой разновидностью дроблении является дезинтеграция- разрыхление в виде слабоцементированных пород, главным об­разом глинистых. Она ведется для высвобождения зерен мине­ралов, входящих в состав породы, без их дробления. Преодоле­ваемые в процессе дезинтеграции силы значительно меньше, чем силы молекулярного сцепления и твердых породах. Присутствие небольших количеств влаги резко повышает прочность глинистые пород. При насыщении же породы водой связь между отдельными зернами уменьшается в результате набухания глины и ослабления ее цементирующего действия, что в конечном счете приводит к полному разрыхлению породы. Степень пластичности глины оказывает большое влияние на скорость разрушения пород, определяя различную их "промывистость".

Мокрая дезинтеграция обычно усиливается и ускоряется дополнительным механическим воздействием - протиркой, ударом, динамическим ударом водной струп и т. д.

Процессы дробления и измельчения могут быть подготовительными процессами (например на обогатительных фабриках перед обогащением полезного ископаемого) или иметь самостоятельное значение (дробильно –сортировочные фабрики, дробление и измельчение угля перед коксованием, перед пылевидным его сжиганием и т.д.).

При дроблении материала необходимо учитывать его проч­ность, т.е. способность оказывать сопротивление разрушению под; внешним воздействием. По прочности все полезные ископаемые де­лятся на четыре категории в зависимости от предела прочности при > сжатии или раздавливании:

Мягкие (уголь, сланец), у которых разрушающее напряжение на сжатие < 100 кг/см 2 ;

Средней твердости (песчаники, известняки) 100...500 кг/см 2 ;

Твердые (гранит, мрамор) 500...1000 кг/см 2 ;

Весьма твердые (руды цветных и редких металлов) > 1000 кг/см 2 .

Прочность полезных ископаемых зависит от вида деформации, минералогического состава, размера кристаллов, трещиноватости, пористости, выветренности. Под способом дробления понимает­ся вид воздействия разрушающей силы на куски дробимого материала.

При дроблении и измельчении применяют следующие способы разрушения (см. рис. 10): раздавливание (а), раскалывание (б), излом (в), срезывание (г), истирание (д) и удар (е). Тот или иной способ разрушения выбирается в зависимости от физико-механических свойств, дробимого материала и крупности его кусков.

Рис.10. Способы разрушения кусков руды:

а - раздавливание; б - раскалывание; в - излом; г - срезывание;

д - истирание; е – удар

Раздавливание, наступающее после перехода напряжении запредел прочности на сжатие; применяется для твердой руды различной крупности;

- раскалывание в результате расклинивания (при этом в материале появляются напряжения от растяжения) и последующего разрыва кусков; применяется для мягких и хрупких руд;

- излом в результате изгиба и срезывание; применяются для материалов различной крупности и прочности;

- истирание кусков скользящей рабочей поверхностью машины, при котором внешние слои куска подвергаются деформации сдвига и постепенно срезаются вследствие перехода касательных;

- напряжений за пределы прочности: применяется для мягких руд и руд средней твердости;

- удар применяется для материала любой крупности, особенно часто - для хрупких руд (бокситов, известняка).

Основное правило «не дробить ничего лишнего» на практике осуществляется путем стадиального построения схем дробления: не за одну операцию, а в несколько стадий, многократно, последова­тельно уменьшать размеры куска. Раздробить куски руды в одну ста­дию невозможно в силу конструктивных особенностей дробильных аппаратов, которые эффективно работают только при ограниченных степенях дробления. Поэтому рациональнее дробить и измельчать материал от исходной крупности до требуемого размера в несколь­ких последовательно работающих дробильных и измельчающих ап­паратах. В каждом из таких аппаратов осуществляется лишь часть общего процесса, дробления или измельчения, называемая стадией дробления или измельчения.

Степень дробления (или измельчения) показывает степень сокращения крупности в процессе разрушения кускового материала. Она характеризуется отношением размеров максимальных кусков в дробимом и дробленном материале или, что более точнее, отношением средних диаметров до и после дробления, подсчитанных с учетом характеристик крупности материала,

max / d max;

i=D ср /d ср,

где i – степень дробления; D max и D ср – соответственно максимальный и средний размеры дробимого материала; d max и d ср – соответственно максимальный и средний размеры дробленого материала.

Степень дробления, достигаемая в каждой отдельной стадии, называется частной. Общая степень дробления получается как произведение частных степеней

i общ = i 1 i 2 ,…,i n .

Число стадий дробления определяется начальной и конечной крупностью дробимого материала. Число стадий дробления при подготовке руд к измельчению обычно бывает равным двум или трем. Одно- или четырехстадийное дробление применяется при переработке калийных солей, на железорудных дробильно-сортировочных фабриках, четырехстадийное – на крупных магнитно-обогатительных фабриках мощностью 40 - 60 тыс. т/сут, перерабатывающих крепкие магнетитовые руды плитняковой формы.

2.

Чем прочнее и тверже полезное ископаемое, тем больше усилие необходимо приложить для того, чтобы преодолеть внутрен­ние силы сцепления частиц руды и раздробить его на части. Силы сцепления между кристаллами значительно меньше сил сцепления внутри кристаллов. При приложении внешних сил разрушение про­исходит преимущественно по ослабленным сечениям, имеющим различные дефекты структуры (трещины).

Коэффициент полезного действия дробления очень мал. Большая часть энергии затрачивается на трение между кусками дробимого материала, частями машины и расходуется в виде выделяе­мого тепла. Полезная работа при дроблении расходуется на образование новых обнаженных поверхностей и пропорциональна величину этой поверхности.

Законы дробления (измельчения) характеризуют зависимость работы, затрачиваемой на дробление (измельчение), от результатов дробления (измельчения), т.е. крупности продукта.

Работа А (Дж), затрачиваемая на дробление (измельчение), пропорциональна вновь образованной поверхности кусков (частиц) дробленного продукта

где - временное сопротивление сжатию Н. м/м 2 ;

Площадь вновь образованной поверхности, м 2 ;

К R – коэффициент пропорциональности, Н. м/м 2 ;

D – характерный размер куска, м.

Уравнение соответствует гипотезе Риттингера (1867 г.).

Если при разрушении куска кубической формы энергия затрачивается в основном на деформацию объема, то в этом случае производимая работа прямо пропорциональна изменению его первоначального объема и определяется по формуле – Кика

А = = K k D 3 ,

где: К и К к – коэффициенты пропорциональности, Н. м/м 3 ;

V – деформированный объем, м 3 ;

П.А. Ребиндер (1941 г.) объединил обе гипотезы и в этом случае полная работа дробления

А = K R D 2 + K k D 3 .

По гипотезе Бонда (1950 г.) полная работа дробления пропорциональна среднему геометрическому между объемом и площадью поверхности куска:

А = К В = К В D 2,5

Все формулы различаются коэффициентами пропорциональности и показателями степени диаметра дробимого куска. По обобщающей гипотезе работу дробления можно представить в виде

где, К – коэффициент пропорциональности в общем виде; m = 2 3.

Когда степень дробления велика (мелкое дробление, измельчение), можно пренебречь работой деформации объема и в этом случае применяют закон Риттингера. Когда степень дробления мала (крупное дробление), можно пренебречь работой образования новых поверхностей и тогда подходит закон Кирпичева – Кика. Формула П.А. Ребиндера имеет универсальное значение. Закон Бонда занимает промежуточное положение.

В связи с крайним разнообразием физических свойств горных пород, а также с необходимостью дробить исходное сырье и по­лучать продукты различной крупности создано очень много конструкций дробильных машин. В настоящее время стремятся строить не универсальные дробильные машины, а специализиро­ванные, дающие возможность достичь наилучших результатов п каждой отдельной операции.

Дробильные машины должны удовлетворять следующим требованиям:

Конструкция и размеры машины должны соответствовать размерам кусков и свойствам обрабатываемого материала, назначению данной операции и заданной производительности.

Разгрузка дробленого материала должна производиться непрерывно. Периодическая разгрузка снижает экономичности дробления.

Дробление должно осуществляться равномерно и с минимальным пылеобразованием. Степень дробления должна регулироваться достаточно просто.

Расход энергии должен быть, возможно меньшим.

Обслуживание должно быть просто и безопасно, смена изнашиваемых частей - легка.

Наиболее ценные детали дробилки должны быть предохра­нены от поломки дешевыми предохранительными устройствами.

Основы теории дробильных машин были созданы проф. Л. Бевенсоном и 3. Б. Канторовичем. Исследованию условий работы отдельных дробильных машин были посвящены работы многих других советских ученых и инженеров, приведшие к выявлению оптимальных условий работы дробильно-измельчительных машин и создание новых конструкций.

Выводы:

Дробление - это процесс уменьшения размеров кусков руды путем разрушения их под действием внешних сил, преодолевающих силы внутреннего сцепления кристаллов твердого вещества. Условно считают, что при дроблении получают продукты крупностью до 5мм. Для дробления применяют дробилки различных конструкций. Дроб­ление производится как сухим способом (основным), так и мокрым (для глинистых руд).

Иногда дробление полезных ископаемых производится вручную. Однако это трудоемкая и дорогая операция, и поэтому она целесообразна лишь в некоторых особых случаях, а именно:

а) при наличии в добытом ископаемом небольшого количест­ва отдельных крупных кусков, размер которых превышает загру­зочное отверстие дробильных машин;

б) при ручной рудоразборке - для разъединения сростков. В первом случае дробление чаще всего ведут на колоснико­вых решетках, перекрывающих бункеры.

При дроблении и измельчении применяют следующие способы разрушения: раздавливание, раскалывание, излом, срезывание, истирание и удар. Тот или иной способ разрушения выбирается в зависимости от физико-механических свойств, дробимого материала и крупности его кусков.

В зависимости от крупности дробимого материала и дробле­ного продукта различают следующие стадии дробления:

Крупное дробление (от 1100...300 до 350...100 мм);

Среднее дробление (от 350...100 до 100...40 мм);

Мелкое дробление (от 100...40 до 30...5 мм).

Процесс дробления отличается большой сложностью и зависит от множества факторов, к которым можно отнести: прочность и вязкость руды, влажность, форма и размер кусков и др.

Контрольные вопросы:

1.
Что называется дроблением?

2.
Какие способы разрушения существуют при дроблении?

3.
Как различаются процессы разрушения, между собой?

4.
Что такое ручное дробление и в каких случаях оно проводится?

5.
Что означает степень дробления, как она определяется?

6. Что характеризуют законы дробления?

7. Чем отличаются формулы Риттингера и Кирпичева – Кика?

8. Какие требования предъявляются дробильным аппаратам, при подготовке их к эксплуатации?

Темы семинаров:

Дробление как неотъемлемый процесс подготовки к обогащению.

Процессы дробления. Общая характеристика.

Ручное и механизированное дробление.

Законы дробления.

Домашнее задание:

Материал взят с сайта www.hystology.ru

Дробление - дальнейший процесс развития одноклеточной зиготы, в ходе которого образуется многоклеточная бластула, которая состоит из стенки - бластодермы и полости - бластоцеля. В бластодерме различают крышу, дно и расположенную между ними краевую зону. В процессе митотического деления зиготы образуются новые клетки - бластомеры, остающиеся тесно связанными друг с другом.

В начальной стадии дробления многоклеточный организм по своему размеру сходен с зиготой, так как его бластомеры, делясь, не достигают размера исходной клетки. Характер дробления в. эволюционном ряду хордовых различен, что в значительной степени обусловлено количеством и распределением желтка в яйцеклетках.

Дробление может быть полным (голобластическим) или частичным (меробластическим). При голобластическом дроблении принимает участие весь материал зиготы, при меробластическом - только та ее зона, которая лишена желтка.

Полное дробление классифицируют на равномерное и неравномерное. Полное равномерное дробление (рис. 43) характерно для яиц с малым количеством желтка (олиголецитальных) и равномерно расположенным по всей цитоплазме клетки желтком (изолецитальных). Примером такого дробления могут служить ланцетник, аскарида и др. В оплодотворенной яйцеклетке различают два полюса: верхний - анимальный и нижний - вегетативный.

После оплодотворения желток, незначительное количество которого было равномерно распределено то всей цитоплазме, перемещается к вегетативному полюсу. Первая борозда дробления проходит в меридиональном направлении и делит зиготу на два бластомера, которые соответствуют будущей левой и правой половине тела зародыша. Вторая борозда дробления проходит также меридионально под прямым углом к первой, и теперь зародыш состоит из четырех бластомеров. Третья борозда дробления имеет экваториальное направление, поэтому каждый бластомер делится на две части. Такой зародыш построен из восьми бластомеров, при этом четыре из них образовались из вегетативного полюса зиготы, в связи с чем они содержат весь желток зиготы и отличаются большими размерами. Эти бластомеры соответствуют задней части тела; анимальные - четыре - передней части.

Затем появляются две меридиональные борозды, делящие зародыш на 16 бластомеров. Пятое дробление - это две широтные борозды, в составе зародыша 32 бластомера. Они начинают

Рис. 43. Схема расположения борозд дробления у ланцетника (A):

I - зародыш на стадии двух бластомеров; II - зародыш на стадии четырех бластомеров; III - зародыш на стадии восьми бластомеров; IV - зародыш на стадии 16 бластомеров; V - зародыш на стадии 32 бластомеров; VI - зародыш на стадии 64 бластомеров; VII - зародыш на стадии 128 бластомеров. Строение бластулы (Б): 1 - бластодерма; 2 - бластоцель; 3 - дно; 4 - краевая зона; 5 - крыша бластулы.

постепенно отодвигаться друг от друга, контактируя лишь боковыми поверхностями. Внутри зародыша образуется сначала небольшая полость - бластоцель, которая постепенно увеличивается. После шестого дробления образуется 64 клетки, при этом борозды дробления проходят меридионально. После седьмого дробления (возникают четыре широтные борозды) зародыш состоит из 128 бластомеров.

Позднее синхронность в делении зародыша нарушается, бластомеры отодвигаются на периферию и располагаются в один слой, формируя бластодерму, а в центре зародыша образуется бластоцель.

Дробление завершается образованием бластулы, форма которой напоминает шар, заполненный жидкостью. Стенка шара образована клетками бластодермы.

Таким образом, при полном равномерном дроблении материал всей зиготы участвует в делении и после каждого деления (дробления) число клеток (бластомеров) увеличивается вдвое.

В бластодерме дифференцируются следующие участки: крыша, построенная из относительно мелких бластомеров; дно - это более крупные бластомеры и краевая зона, лежащая между дном и крышей бластулы.


Рис. 44. Полное неравномерное дробление зиготы амфибии. Строение бластулы:

1 - микромеры; 2 - макроциты; 3 - бластодерма; 4 - бластоцель.

Полное неравномерное дробление характерно для мезолецитальных (среднее количество желтка) и телолецитальных (желток расположен в вегетативном полюсе) яйцеклеток. Примером этого типа дробления может служить дробление зиготы амфибий (рис. 44).

Дробление начинается с образования двух меридиональных борозд дробления, следующих друг за другом под прямым углом. Они быстро делят лишенный желтка анимальный полюс зиготы на два, а затем на четыре мелких бластомера. Вегетативный полюс, содержавший весь желток зиготы, дробится значительно медленнее, и бластомеры, возникающие здесь, более крупных размеров.

Третья борозда проходит ближе к анимальному полюсу зиготы и имеет широтное направление. Широтные борозды дробления сменяются меридиональными, при этом очень скоро возникает асинхронность и тангенциальность (деление бластомеров в


Рис. 45. Частичное (дискоидальное) дробление зародыша курицы:

А, В - стадии дробления - вид сверху (А - две меридиональные борозды, В - более поздняя стадия дробления); С - разрез зародышевого диска (а, b, с, - краевые клетки, расположенные на желтке; d, e, f, g, h - клетки, изолированные от желтка).

плоскости, параллельной поверхности зиготы) в дроблении, поэтому оно завершается образованием многослойной бластулы. Крыша бластулы построена из мелких бластомеров, именуемых микромерами. Дно состоит из крупных бластомеров - макромеров. Весь желток локализован в макромерах. Бластоцель сдвинут к анимальному полюсу и уменьшен в размере. Бластула, образовавшаяся в процессе голобластического (полного) дробления, носит название целобластулы.

Частичное, или меробластическое (дискоидальнее), дробление распространено у рыб, рептилий, птиц и характерно для полилецитальных (много желтка) и телолецитальных яиц (рис. 45).

В дроблении участвует только лишенный желтка поверхностный слой анимального полюса зиготы, так как здесь находятся ядро клетки и цитоплазма без желтка. Вся остальная часть зиготы загружена желтком и поэтому не дробится.

Первые две меридиональные борозды проходят через анимальный полюс под углом один к другому. Они не распространяются на вегетативный полюс, в связи с чем последний остается неразделенным на бластомеры. Меридиональные борозды сменяются широтными и тангенциальными. Бластомеры, образовавшиеся к ходе дробления, располагаются на желтке в один слой. Этот слой называется зародышевым диском, поэтому дробление получило название дискоидального.

На построение тела зародыша используется только его центральная часть - зародышевый щиток. Остальная часть зародышевого диска участвует в образовании временных (провизорные) органов - зародышевых оболочек, которые создают благоприятные условия для развития зародыша.

Дробление завершается образованием бластулы, у которое бластоцель имеет вид узкой щели и сдвинут к анимальному полюсу. Крыша бластулы построена из бластомеров. Краевая зона - это интенсивно делящиеся клетки (бластомеры) периферической зоны зародышевого диска. Дном является неразделенный на бластомеры желток вегетативного полюса зиготы. Такой тип бластулы называется дискобластулой.

Таким образом, из приведенного материала следует, что у хордовых имеется определенная зависимость между количеством желтка в яйцеклетках и характером дробления. Оно изменяется от полного (голобластического) к частичному (меробластическому), а бластула - от целобластулы к диско бластуле.

Общими свойствами развивающихся зародышей всех классов животных на стадии дробления являются постепенное увеличение числа клеток, а следовательно, и ДНК, так как дочерние клетки всегда диплоидные; увеличение площади клеточных поверхностей; возрастание региональных различий клеточных популяций.


Выбор редакции
Можно ли перенести отпуск на следующий год? Да, при соблюдении определенных условий перенос отпуска возможен как по желанию работника,...

Выше подчеркивалась целесообразность модернизации оборудования с целью более эффективного его использования. Учитывая важность данного...

Термины «ретро-бонус» или «ретро-скидка» появились в деловом лексиконе сравнительно недавно. Кто и когда их впервые употребил и что хотел...

ДЕТИ ДОЛЖНЫ ЗНАТЬ СУЩЕСТВИТЕЛЬНЫЕ: грач, скворец, ласточка, стриж, кукушка, журавль, гуси, лебеди, жаворонок, дрозд, гнездо, скворечник,...
Н.А. Абрамова Генеральный директор ТД «Альфа-Сервис» Журнал «Планово-экономический отдел », № 3 за 2011 год Новый год, 23 февраля, 8...
Приказ о дисциплинарном взыскании издается на основании объяснений сотрудника (в письменном виде), нарушившего трудовую дисциплину....
178 Трудового кодекса Российской Федерации (далее — ТК РФ) при расторжении трудового договора в связи с ликвидацией организации (п. 1 ч....
Нефть известна человеку с древнейших времен. Люди уже давно обратили внимание на черную жидкость, сочившуюся из-под земли. Есть данные,...
Sonic the Hedgehog (русск. Ёжик Соник , яп. ソニック・ザ・ヘッジホッグ ), также известный по многочисленным кличкам: Fastest Thing Alive (по Арчи...